The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hun LEE(30hit)

21-30hit(30hit)

  • Parameter Selection for Radar Systems in Roadside Units

    Chia-Hsing YANG  Ming-Chun LEE  Ta-Sung LEE  Hsiu-Chi CHANG  

     
    PAPER-Sensing

      Pubricized:
    2022/01/13
      Vol:
    E105-B No:7
      Page(s):
    885-892

    Intelligent transportation systems (ITSs) have been extensively studied in recent years to improve the safety and efficiency of transportation. The use of a radar system to enable the ITSs monitor the environment is robust to weather conditions and is less invasive to user privacy. Moreover, equipping the roadside units (RSUs) with radar modules has been deemed an economical and efficient option for ITS operators. However, because the detection and tracking parameters can significantly influence the radar system performance and the best parameters for different scenarios are different, the selection of appropriate parameters for the radar systems is critical. In this study, we investigated radar parameter selection and consequently proposes a parameter selection approach capable of automatically choosing the appropriate detection and tracking parameters for radar systems. The experimental results indicate that the proposed method realizes appropriate selection of parameters, thereby significantly improving the detection and tracking performance of radar systems.

  • Locality Based Location Tracking Using Virtually Hierarchical Link in Personal Communications Services

    SeungJoon PARK  DongChun LEE  JooSeok SONG  

     
    LETTER-Mobile Communication

      Vol:
    E81-B No:9
      Page(s):
    1779-1781

    The proposed method tracks the user location in a hierarchically distributed fashion. Call patterns in personal communications services (PCS) have the locality. The virtually hierarchical link (VHL) is used to support the call locality and makes the fast call set up possible. The locality consideration effectively reduces the query traffic compared with non-locality consideration.

  • Scalable Video Broadcasting with Distributed Node Selection in Wireless Networks

    Yonghun LEE  Kyujin LEE  Kyesan LEE  Doug Young SUH  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:4
      Page(s):
    1467-1470

    We propose a distributed node selection (DNS) scheme that guarantees quality of service (QoS) of the scalable video broadcasting system over wireless channels. The proposed DNS scheme chooses the destination node based on the SVC layer information, and it selects the best relay from a set of competing candidate nodes by considering two factors: 1) wireless channel conditions between destination and relay candidates and 2) scalable video's layer information. In simulations, the performance of the proposed scheme in terms of quality gains, complexity (overhead) and applicability was examined.

  • Handover Control Method Using Resource Reservation in Mobile Multimedia Networks

    Dong Chun LEE  Jong Chan LEE  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E92-B No:8
      Page(s):
    2684-2697

    When handover events occur during the transmission of multimedia traffic, efficient handover control procedures and radio resource allocation are necessary to maintain the same QoS of transmitted multimedia traffic because the QoS may be degraded by additional delay and information loss. In this paper we propose a new handover control method for the next generation mobile multimedia networks, in which the handover setup process is done in advance of a handover request by predicting the handover cell from mobile terminal's current position. The handover procedures for real-time sessions are performed based on the handover cell information and the resource reservation condition. The radio resources in the estimated adjacent cells should be reserved and allocated to guarantee the continuity of the real-time sessions. We conduct a simulation model that is focused on the handover failure rate and packet loss rate. The simulation results show that our proposed method provides better performance than the previous methods.

  • A New Fine Doppler Frequency Estimator Based on Two-Sample FFT for Pulse Doppler Radar

    Sang-Dong KIM  Jong-Hun LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E96-B No:6
      Page(s):
    1643-1646

    We propose a new fine Doppler frequency estimator using two fast Fourier transform (FFT) samples for pulse Doppler radar that offers highly sensitive detection and a high resolution of velocity. The procedure of fine Doppler frequency estimation is completed through coarse frequency estimation (CFE) and fine frequency estimation (FFE) steps. During the CFE step, the integer part of the Doppler frequency is obtained by processing the FFT, after which, during the FFE step, the fractional part is estimated using the relationship between the FFT peak and its nearest resultant value. Our simulation results show that the proposed estimator has better accuracy than Candan's estimator in terms of bias. The root mean square error (RMSE) of the proposed estimator has more than 1.4 time better accuracy than Candan's estimator under a 1,024-point FFT and a signal-to-noise ratio (SNR) of 10 dB. In addition, when the FFT size is increased from 512 to 2,048, the RMSE characteristics of the proposed estimator improve by more than two-fold.

  • Parameter Selection and Radar Fusion for Tracking in Roadside Units

    Kuan-Cheng YEH  Chia-Hsing YANG  Ming-Chun LEE  Ta-Sung LEE  Hsiang-Hsuan HUNG  

     
    PAPER-Sensing

      Pubricized:
    2023/03/03
      Vol:
    E106-B No:9
      Page(s):
    855-863

    To enhance safety and efficiency in the traffic environment, developing intelligent transportation systems (ITSs) is of paramount importance. In ITSs, roadside units (RSUs) are critical components that enable the environment awareness and connectivity via using radar sensing and communications. In this paper, we focus on RSUs with multiple radar systems. Specifically, we propose a parameter selection method of multiple radar systems to enhance the overall sensing performance. Furthermore, since different radars provide different sensing and tracking results, to benefit from multiple radars, we propose fusion algorithms to integrate the tracking results of different radars. We use two commercial frequency-modulated continuous wave (FMCW) radars to conduct experiments at Hsinchu city in Taiwan. The experimental results validate that our proposed approaches can improve the overall sensing performance.

  • Electro-Optical Properties of OCB Mode for Multi-Media Application

    Changhun LEE  Haksun CHANG  Seonhong AHN  Kunjong LEE  

     
    PAPER-LCD Technology

      Vol:
    E86-C No:11
      Page(s):
    2249-2252

    We have obtained high performance and low voltage driving OCB panel by reducing the critical voltage and retardation matching between liquid crystal layer and compensation films. Flattening color filter layer and optimizing rubbing process have minimized the critical voltage in the panel. In addition, an appropriate retardation of the film and LC layer has scanned to achieve low driving voltage and high transmission. Especially, by adopting new driving scheme, we considerably reduced the initial bend transition time, which is known as one of drawbacks in OCB mode. As a result, we developed the proto-type 17" WXGA OCB panel with less than 5 V drive, over 90% of TN light efficiency and over 80 degree for all viewing direction except for rubbing direction including color shift as well as high-speed response time.

  • A 2-Gb/s CMOS SLVS Transmitter with Asymmetric Impedance Calibration for Mobile Interfaces

    Kwang-Hun LEE  Young-Chan JANG  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E97-C No:8
      Page(s):
    837-840

    A scalable low voltage signaling (SLVS) transmitter, with asymmetric impedance calibration, is proposed for mobile applications which require low power consumption. The voltage swing of the proposed SLVS transmitter is scalable from 40,mV to 440,mV. The proposed asymmetric impedance calibration asymmetrically controls the pull-up and pull-down drivers for the SLVS transmitter with an impedance of 50,$Omega$. This makes it possible to remove the additional regulator used to calibrate the impedance of an output driver by controlling the swing level of a pre-driver. It also maintains the common mode voltage at the center voltage level of the transmitted signal. The proposed SVLS transmitter is implemented using a 0.18-$mu $m 1-poly 6-metal CMOS process with a 1.2-V supply. The active area and power consumption of the transmitter are $250 imes 123 mu$ m$^{2}$ and 2.9,mW/Gb/s, respectively.

  • A Visual Perception Based View Navigation Trick Mode in the Panoramic Video Streaming Service

    Joo Myoung SEOK  Junggon KO  Younghun LEE  Doug Young SUH  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E94-B No:12
      Page(s):
    3631-3634

    For the panoramic video streaming service, this letter proposes a visual perception-based view navigation trick mode (VP-VNTM) that reduces bandwidth requirements by adjusting the quality of transmitting views in accordance with the view navigation velocity without decreasing the user's visual sensitivity. Experiments show that the proposed VP-VNTM reduces bandwidth requirements by more than 44%.

  • A Novel Fairness Mechanism Based on the Number of Effective Nodes for Efficient Bandwidth Allocation in the Resilient Packet Ring

    Dong-Hun LEE  Jae-Hwoon LEE  

     
    PAPER-Network

      Vol:
    E89-B No:5
      Page(s):
    1526-1533

    Metro networks are based on SONET/SDH which uses the circuit switching technology. Circuit switching is inappropriate for the Internet traffic which is very bursty nature. Therefore, metro networks can become a bottleneck. In order to resolve this problem, the IEEE 802.17 working group has proposed the Resilient Packet Ring (RPR) technology. In order to provide fairness among stations in the RPR network, two types of RPR fairness mechanisms have been defined. However, the IEEE 802.17 RPR fairness mechanisms have the problem of inefficient use of the available bandwidth after the congestion at a node has been resolved. In this paper, we propose an improved bandwidth allocation in which, after the congestion resolution at a node, the node estimates the number of effective nodes transmitting traffic, measures the remaining bandwidth and fairly allocates the available bandwidth to effective nodes. To show the performance of our proposed mechanism, we have performed simulation and show that the proposed mechanism gives higher bandwidth utilization than the existing RPR fairness mechanisms.

21-30hit(30hit)